SWES77 2011S 1

Domain-Driven Design

Ali Findik

Abstract—Domain Driven Design (DDD) is an approach to
developing software for complex needs by deeply connecting
the implementation to an evolving model of the core business
concepts. [11] DDD combines design and development practice
by modeling the core logic of an application. It introduces
common design principles to reflect the domain and the
domain logic of the business problem. DDD consists of a set of
patterns for building enterprise applications. In this paper you
should find information about main principles and patterns of
Domain Driven Design approach.

|.INTRODUCTION

For almost half of a century, the computer software
technology has been developing rapidly and demands of the
business world from the software technology also increases
day by day. Since the development of software business
logic solutions started, the responsibilities of software
engineers has increased excessively; therefore, this heavy
workload compelled software developers to evolve
common solutions as a result. Currently, there are various
design techniques developed for the purpose of creating
solutions to the complex projects. The Domain-Driven
Design is an approach that follows the path starting with
domain to solve the complex problems of the business
world.

“The critical complexity of the most software projects is in
understanding the business domain itself.” [4]

“The heart of software is its ability to solve domain-related
problems for its user. All other features, vital though they
may be, support this basic purpose. When the domain is
complex, this is a difficult task, calling for concentrated
effort of talented and skilled people.” [3]

In section Il, the significance of understanding domain
among business software projects is explained in detail.
Furthermore the communication problems rising between
domain side and the software side implying the requirement
of a language is introduced; which is called The Ubiquitous
Language. In section 1ll, the design blocks that will form

This work was supported in part by the Software Engineering
Department of Bogazici University.

Ali Findik is with the Software Engineering Department, Bogazici
University, Istanbul (e-mail: ali.findik@boun.edu.tr).

the layered structure in Domain-Driven Design is
explained. In section IV, some methods are proposed about
refactoring. In section V, the importance of preserving the
integrity of sub-models for large-scale projects is explained
and some patterns for maintaining model integrity are
introduced.

1. BUILDING DOMAIN KNOWLEDGE

In business world, the main reason for developing a
software is to propose a solution for a specified problem.
The first step is to determine the problem and understand all
aspects related to the problem. For instance, it is unlikely to
develop an accurate flight reservation system without a
well described domain knowledge. The domain experts are
the best candidates for describing the domain with all
details. Thereby, the primary phase should be the
construction of domain knowledge, which will be fed by
domain experts.

Software analysts work on the domain information
provided by domain experts, and they transform this
knowledge into a more practical form. Domain experts
know the domain well, but their methods of organizing the
domain information may be very far from the approach of a
software developer. Likewise, both sides may also express
the information in different ways.

“The developers have their minds full of classes, methods,
algorithms, patterns and tend to always make a match
between a real life concept and a programming artifact.
They want to see object classes to create and what
relationships to model between them. They think in terms of
inheritance, polymorphism, OOP etc. But the domain
experts usually know nothing about any of that.” [2]

“To overcome this difference in communication style, when
we build the model, we must communicate to exchange the
model, about the elements involved in the model. A core
principle of domain-driven design is to use a language
based on the model. Since the model is the common ground,
the place where software meets the domain, it is
appropriate to use it as the building ground for this
language. “[2]

/

{ SERVICES

\

7
/ ENTITIES

express model with /\

express model with

(DEL DRIVEN
\DE&GN/

\5 isolate domain with

X \y

N} S
mutually xclusive
cho (LAYERED \
SMART ul

v

access with '\\ REPOSITO?\

SWES77 2011S 2

access with

,.'
\ ~ maintain integrity with /

/

act as root of

A

>1\ AGGREGATES

__express model with f \ \ 7_/
Y }\\

ALUE OBJECTS

\‘#/ \ encapsulate WIthx

I

\ '; |

\ \ |

NN\ L

encapsulate with
\x‘_/y'\ FACTORIES

N

Fig. 1. Building Blocks of Layered Architecture [3]

This common language is called The Ubiquitous
Language. This language created between the software
developer and the domain expert ensures that both sides talk
about the same way, and also helps software modeler to
create the base for the objects.

I11. BUILDING BLOCKS OF AMODEL-DRIVEN
DESIGN LAYERED ARCHITECTURE

Building the domain model as close as possible to the
ideal will certainly decrease or even prevent the potential
drawbacks that may occur during the whole process. The
next step following the construction of domain model is to
translate the model into code, and there are several methods
for transferring the model into code with all components.

One of the so called methods is named as “Analysis
Model”. In this model, analysts listen and get the
information about domain from domain experts. Then, they
inform the software team about the domain. One of the
potential flaws of this approach is that, analysts may not
realize major points of the project that may cause problems.
Analysts may focus on project generally so they might

some miss essential points about the model that
programmers need and, they also may focus on insignificant
parts of the model. This leads analysts to misinform
developers and as a result, developers might have no choice
but to make blindfolded decisions.

In this case, relating closely the domain modeling and the
design process may be proposed as a better approach.

“Any technical person contributing to the model must spend
some time touching the code, whatever primary role he or
she plays the project. Anyone responsible for changing code
must learn to express a model through the code. Every
developer must be involved in some level of discussion
about the model and have contact with domain experts.
Those who contribute in different ways must

consciously engage those who touch the code in a dynamic
exchange of model ideas through the Ubiquitous
Language.”[2]

A. Conceptual Layers In Domain-Driven Design

As mentioned in the introduction section, some common
design blocks may be used to create build a layered
architecture. Domain-Driven Design proposes four
conceptual layers:

1) Presentation Layer:

All the user interface operations done in this layer.
Existing information is presented to user and all the
commands coming from user are interpreted in this layer.

2) Application Layer :

Application Layer is the part that contains definitions of
all supposed functions that the software should have.
Business rules or knowledge is excluded from this layer.
Such tasks like organizing task distribution of domain
objects, controlling usage of domain objects are included
Application Layer. It manages the process of a task which is
done by either user or software. Even business rules are not
known, some services defined in Domain Layer can be used
to coordinate the tasks, thus, Application Layer can focus
on application logic instead of having anything related to
“domain/business” logic.

“The Application Layer isn’t mandatory; it is only there if it
really adds value. Since my Domain Layer is so much
richer than before, it’s often not interesting with the
Application Layer.”[9]

3) Domain Layer:

When the complexity of a system increases, the amount
of domain-related code also rises making it unreasonably
difficult to understand and impossible to develop further.
For this reason, defining a domain layer to separate domain
logic from other layers provides a much more coherent
system. It is fair to define Domain Layer as the heart of
business software. All the domain objects, business rules
and behaviors are accomplished in Domain Layer. Layers
other than Domain Layer are fed from Domain Layer’s
services so this layer must be isolated from others as much
as possible and loose coupling should be reduced to
minimum.

4) Infrastructure Layer:

This layer is the infrastructure layer — as the name itself-
which assists all other layers with a supportive library,
provides and manages communication between layers.
B.Building Blocks (Fig.1)

1) Entities
The domain objects defined in system life cycle are

called entities. The main difference between a class and an
entity is that entities have identity like information making

SWES77 2011S 3

it represent the real world better than classes. When an
instance of an object created in an application, the identity
of the object has to be traced and preserved to express an
entity for that object. For instance this entity might be a
combination of attributes or can be an “identity_id” that
assigned to the related object.

“Having all entities inherit from entity base class type will
help eliminate some duplicate properties and behavior in
the domain entity classes. The use of this base class is
purely for convenience. “[8]

2) Value Objects

It is not necessary to have an id for all the objects of the
system. In a domain model, which object needs to have an
id and eventually become an entity should be chosen
wisely. Because some objects may hold simple values or
only used to define certain aspects of the domain. Such
objects having no real identity are called “Value Objects”.
Defining Value Object immutable, meaning the definition
of Value Objects should be done in constructor and no
modification of their value should be made during their life
time, can prevent possible consistency problems.

“Omne golden rule is: if Value Objects are shareable, they
should be immutable. Value Objects should be kept thin and
simple. When a value object is needed by another party, it
can be simply passed by value, or a copy of it can be
created and given. “[2]

3) Services

In the creation phase of the domain model, desired
functions of the system are defined. If an object oriented
approach is meant to be followed, the functions should be
bind to objects making it possible to do desired tasks
through related objects. Occasionally, some functions
performing vital tasks of the system might be connected
more than one object and consequently putting that task to a
different object can be absurd. For this reason, we define
such tasks that are important but cannot be a ‘thing’ in
domain as services. Services express relative concepts
completely and clarifies the definition in the domain model.

Eric Evans indicates three characteristics of a well-defined
service: [3]
e The operation relates to a domain concept that is
not a natural part of an entity or a value object
e The interface is defined in terms of other
elements in the domain model
e The operation is stateless

Services can be defined in all layers. For instance,

infrastructure services can be used to access outside sources
such as file systems, databases, SMTP etc. Domain services
are definitions of the domain models functional part and can
coordinate the sub level functions of the domain. An
another example is Application services which transmit
application processes and operations to interface level.
Services can be used in different layers for varying
purposes as long as the dependency between layers is one
sided.

4) Modules

Large scale complex software projects have a tendency to
grow bigger which also exaggerates the model and makes it
harder to understand gradually. After some points, it is
nearly impossible to evaluate the project as a whole. In such
cases, organizing concepts inside the application and
dividing them into modules will be very useful. Making
developments inside modules and discrimination between
modules will provide high cohesion and low coupling.
Using Ubiquitous Language to name modules will also
improve the intelligibility of model when viewed from
above.

5) Aggregates

Domain model contains lot of objects and there may be
associations between all objects. While one-to-many
associations relate to more than one object, many-to-many
associations increase complexity further. For this reason,
connecting an object to a group instead of connecting it to
other many objects or connecting object groups among
reduces the complexity greatly. The group of associated
objects accepted as a one in terms of data changes are called
“aggregate”. Aggregates are separated from other objects in
domain with a boundary. Every aggregate has a root that is
an entity and objects outside of boundary are allowed to
access the root only. Objects inside an aggregate can
reference among them but they have no access to the
objects apart from aggregate. When the root instance of an
aggregate is terminated, all the objects of the aggregate are
disposed as well. Additionally, aggregate objects can
reference to other roots through their original roots or even
change root too.

“Aggregates represent a very clear business domain
aspect that should definitely be discussed with domain
experts. It is more important to focus on the fact that an
aggregate is aunit of consistency from a business
perspective.” [1]

“It is difficult to guarantee the consistency of change to
objects in a model with complex associations. Invariants
need to be maintained that apply to closely related groups
of objects, not just discrete objects. Yet cautious locking

SWES77 2011S 4

schemes cause multiple users to interfere pointlessly with
each other and make a system unusable.” [3]

6) Factories

In Domain Layer, Factories are members responsible for
creation and management of domain objects. When create
an object request is made, Factory class isolates the
information needed to create the demanded object and
returns only the object after creation. It is suggested to use
factories when creating entities and aggregates. Aggregate
root and aggregate objects can be created at once with
factory methods. Factories can also be used to reconstitute
the certain objects created before. Creation and
reconstitution of entities are different from value objects
due to having an identity.

“Entity Factories and Value Object Factories are different.
Values are usually immutable objects, and all the necessary
attributes need to be produced at the time of creation. When
the object is created, it has to be valid and final. It won’t
change. Entities are not immutable. They can be changed
later, by setting some of the attributes with the mention that
all invariants need to be respected. Another difference
comes from the fact that Entities need identity, while Value
Objects do not.” [2]

Such patterns of “Abstract Factory”, “Factory Method”
defined among creational patterns [8] in the book named “
Design Patterns by Gamma et all” offers effective methods
to use factories. [6]

7) Repositories

Domain model objects and object groups are no obliged
to deal with infrastructure in order to access other objects.
Forming a repository that all the references among objects
can be obtained will increase the clarity of the model
making it more systematic. Repository is a storage of all
persistent objects which can be accessed globally.
Therefore, the object storage and access responsibility of
domain model is delegated to repository. Repositories must
use the ubiquitous language of the domain. From the
Domain Driven point of view, using methods of same
language instead of using DAO (Database Access Object)
will be much more advantageous.

IV. CONTINIOUS REFACTORING

Refactoring is a discipline that is followed while making
small improvements on projects and occasionally these
minor changes may prevent some upcoming bottlenecks.
Refactoring the code whenever a new concept added to the

SWES77 2011S

keep model unified by . _—" T~
/ /[ConTiNuous e
——— INTEGRATION) SHARED
s - ~ S \ KERNEL
{ BOUNDED \ T — ANy
- \ /])
. A 7 /
names ~S— - (CSUSPTELT:: 3
enter { _————__overlap allied contexts through Teoo /
. . ,,’/ S -)) . \ /
assess/overview / _.’, _—relate allied contextsas __—7 "~~~
relationships with | ~ CONTEXTMaP |~ T /,/"") \
T / overlap unilaterally as / \
~ /\ puntateraly [conrormisT |
- \\ e . /

[Uelauitous
\ LANGUAGE
™

,
translate and insulate

unilaterally with

V4 /
- f

{ ANTICORRUPTION

\ LAYER /

N,

//.

stjpport multiple S S~
Y, clients through
: free teams to go)

,/"' .

. -

N
w/ OpeNHosT _—

—

_ SeRvice farmalizg_gs__;..’/ PuBLISHED
~_ "'7--\ LANGUAGE
""\-\.,\\ T
SEPARATE
Ways)
Y,

Fig.2. Model Integrity Methods in Domain-Driven Design [3]

application will ensure that the code is up-to-date with the
domain. Determining the implicit concepts of the domain
and converting them to explicit as much as possible will
maintain continuous refactoring. Analyzing certain notions
may be practical for this process.

There are three ways suggested for code refactoring in
Domain Driven Design concept. First of them is
“Constraint”. A domain object may have a constraint
defined by business rules. If these constraints are mentioned
in Ubiquitous Language concretely, writing different
methods (mostly methods that returning Boolean values) to
make them explicit and placing them in some private
classes will make the system more flexible and suitable for
refactoring.

A second method in refactoring is “Process”. Usage of
procedural concepts conflicts with object oriented approach
so alternatively implementing processes to associated
classes will be useful. The easiest way of applying process
method is to use Services. The processes mentioned in
ubiquitous language can be used from services.

Last of all is the “Specification” method. In Domain
Layer, business rules implying behaviors and applied to
Entities and Value Objects are the responsibility of objects.
When the complexity of the system gets higher, rules get
more detailed and cross outside of domain layer. To prevent
that from happening, an object that implements all
exclusive business rules and contain only certain

specifications to the related object is defined. This method
can be applied to every object that contains busines rules up
to some level to need a specification.

V. MAINTAINING MODEL INTEGRITY

Large-scale software project’s models may be composed
by several sub-models, because expressing the model by
sub-models may improve some aspects of the model like
clarity, flexibility etc. For these kind of projects, integrating
all sub-models as a one complete model may be impossible.

“The world of large systems development is not the ideal
world. To maintain that level of unification in an entire
enterprise system is more trouble than it is worth. It is
necessary to allow multiple models to develop in different
parts of the system, but we need to make careful choices
about which parts of the system will be allowed to diverge
and what their relationship to each other will be. We need
ways of keeping crucial parts of the model tightly unified.
None of this happens by itself or through good intensions. It
happens only through conscious design decisions and
institution of specific processes. Total unification of the

domain model for a large system will not be feasible or
cost-effective.” [3]

Domain-Driven Design proposes some methods about
preserving the model integrity. Short explanations are given
below for each pattern.

A. Bounded Context

Bounded Context is the boundary determining the
applicability of a particular model. It provides project team
a clear and common domain definition eventually helping
them to develop system in a more convenient way. First,
contexts of model are decided, then tasks assigned to
related teams. The responsibility that will be given to a
bounded context and roles should be defined clearly.

B. Continuous Integration

Fragmentation is inevitable when some number of people
are working in a bounded context so for the continuum of
purity, a process of integration should be applied to all the
elements created in the context and written code should be
merged frequently (depending on the size of the software
team). Practicing Continuous Integration between different
bounded contexts is senseless so Continuous Integration
should be practiced among the people working on the same
bounded context.

C. Context Map

Developing only separate bounded contexts is not
sufficient alone because it lacks a global view of the project
so it is important to merge different bounded contexts and
manage interconnections. Context Map is a schematic that
expresses different bounded contexts and their relations.

D. Shared Kernel

There may be duplicate tasks between contexts therefore,
some common areas can be defined via domain model to
avoid repetitions and more than one team can work on this
shared kernel. If a team is using shared kernel, no
modification should be made without notifying other teams
working on same kernel.

E. Customer-Supplier

In case where the relation between two bounded contexts
is strong in one side and not in the other, using a shared
kernel may not be handy. For such cases, building a
customer-supplier hierarchy between bounded contexts
helps managing one sided relations.

F. Conformist

When customer needs the supplier but the supplier is not
interested in this relation, it may be useful to go for
adaptations to the supplier. This concept is called
Conformist Pattern. Before applying this pattern, it is

SWES77 2011S 6

important to be sure if the benefits are worth for adaptations
and change.

G. Anticorruption Layer

Systems communicate with other systems. While creating
a model for a system, the communication protocols and
related concepts about accessing to other systems should be
well defined. However the external system is modeled,
internal model should use its own Ubiquitous Language and
methods during communication processes. For this purpose,
building a layer that act as a translator and an adapter
between systems, which speaks the same language with
internal model and has the ability to reach the external
system will provide coherence and integrity for model. This
layer is called Anticorruption Layer, which seems like a
part of the main model, not like an external component. It
communicates with external system in its own language,
acquires the knowledge from it, and serves it to the internal
system. In this instance, the easiest way to implement such
a pattern is the use of Services.

H. Separate Ways

In case a system contains various sub-systems that has
very weak relations between, in the modeling perspective
Separate Ways pattern may be used. The sub-systems that
does not share common parts with others are determined,
and their bounded context is defined. These separate
bounded contexts may be modeled and designed separately.
Likewise, different technologies and implementation
techniques may also be used in these contexts, this provides
flexibility and freedom for the developer team. Before
applying this pattern, it is good to be sure if this bounded
context has not any significantly common parts with other
contexts.

I Open-Host Service

In most case, interaction between systems are made by
creating a translation layer between. If more than one sub-
systems need the access to a sub-system and they do their
requests in different ways and methods, adding a translation
layer for all of these clients is not practical. Defining some
Open-Host Services in this sub-system to serve other client
sub-systems by developing a common protocol for all types
of demands. This protocol should be pure and coherent.

J. Distillation

The model of a large scaled software projects may still

look complex even after all abstractions, refinements and
refactoring. In this case Distillation may provide some more
simplicity. This method offers to define the main core
concepts of the model, to call it “Core Domain”, and to
introduce the rest of the context as “Generic Sub-Domain”.
Core Domain should be as small as possible, because
modeling the Core Domain carries the high priority. Using
the best developers in this process would be the right
choice. Generic Sub-Domains may be implemented “In-
House”, may be provided by outsourcing or reuse methods.

Detailed information about model integrity patterns is
available on Eric Evans "Domain-Driven Design Tackling
Complexity in the Heart of Software” [3]

V. CONCLUSION

In these days, the importance of understanding the
domain is frequently mentioned. The main objective of
software projects is to offer solutions for domain problems,
so the source of the failure in most cases lies within the core
domain.

“The long-term trend is toward applying software to more
and more complex problems deeper and deeper into the
heart of these businesses. It seems to me this trend was
interrupted for a few years, as the web burst upon us.
Attention was diverted away from rich logic and deep
solutions, because there was so much value in just getting
data onto the web, along with very simple behavior. There
was a lot of that to do, and just doing simple things on the
web was difficult for a while, so that absorbed all the
development effort.” [4]

All stakeholders who works in the process of
understanding the domain and modeling, like software
engineers, requirement engineers, analysts, domain experts
may make mistakes, and this is the part of the natural
process because it is always difficult to define a problem of
the world phenomena in the machine phenomena [7].
Domain Driven Design offers methods in order to get the
best domain knowledge, and decrease the likelihood of
misunderstandings that may occur during the modeling. It
emphasizes bravely the importance of the facts like, all
teams including technical or non-technical stakeholders
speak the same Ubiquitous Language and participate in
modeling and analyze processes etc. This concept is the
main factor to provide the integrity of the model. The
building blocks that DDD offers aims to decrease the
complexity of the domain, to refine it, to ensure the purity
and clarity. The patterns of DDD helps maintaining the
model coherent and pure. As in all pattern approaches, it is
not practical to apply DDD in all cases, it is not needed to
implement the whole concept, to take the advantages of it
where it will produce benefits and to think free for the rest
will be helpful.

SWES77 2011S 7

Finally, DDD became one of the popular concepts in the
enterprise software world by providing advantages in
domain understanding and modeling. In general, the more
DDD decreases the percentages of failure in software
projects, the more domain-oriented methods will gain
importance.

VI|. REFERENCES

[1] Adzic Gojko; “Improving Performance and Scalability with DDD”
posted on Jun,23,2009
Available from Internet
<URL:http://gojko.net/2009/06/23/improving-performance-and-

scalability-with-ddd>

[2] Avram Abel -Marinescu Floyd; “Domain Driven Design Quickly”
Available on InfoQ.com

[3] Evans Eric;”"Domain-Driven Design Tackling Complexity in the
Heart of Software” Addison-Wesley 2004
ISBN-13: 978-0-321-12521-7
ISBN-10: 0-321-12521-5

[4] Evans Eric; “Interview With Eric Evans; Why DDD Matters Today ”
posted on Dec,20,2006
Available from Internet
<URL.: http://www.infog.com/articles/eric-evans-ddd-matters-today>

[5] Evans Eric; DDD: “Putting the Model to Work”; presented on
Nov,06,2007
<URL.: http://infog.com/presentations/model-to-work-evans>

[6] Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John M.;
“Design Patterns: Elements of Reusable Object-Oriented Software”
Addison-Wesley 2000
ISBN: 0-201-63361-2

[7] Lamsweerde Axel Van; “Requirements Engineering”
Wiley Publishing 2009
ISBN: 978-0-470-01270-3

[8] McCarthy Tim; “.NET Domain-Driven Design with C#, Problem —
Design — Solution” Wiley Publishing, Inc 2008
ISBN: 978-0-470-14756-6

[9] Nilsson Jimmy; “Applying Domain-Driven Design and Patterns —
With Examples in C# and .NET” Pearson Education 2006
ISBN: 0-321-26820-2

[10] Wikipedia - “Creational Patterns”
Available from Internet
<URL:http://en.wikipedia.org/wiki/Creational_pattern>

[11] Wikipedia — “Domain Driven Design”
Available from Internet
<URL: http://www.en.wikipedia.org/wiki/Domain-driven_design >

